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TREE
where ¢ = 2/(A , + A _ ). Then ||u]| = o(w) = i"—ﬁ and

3 - A
K(H) = max min

4 l'm:ln

s-2-3- cond(A) which due to (3.13) proves

Theorem 4.2

*
If A= A > 0 then Richardson iteration is numerically stable.
Example 4.3 Gauss-Seidel Iteration

Assume that A = I - B has Property A. Thus

B=L+U=

where L and U are strictly lower and strictly upper triangular matrices.

Seidel Iteration is defined by

H=(-rhHus=
-1
h-(I-L)bo
It is easy to verify that

* k-1
K 0, F (F F)

S * _ Kk o |l ﬂk"' o A+ o?®), w21
0 (F F)
From (3.12) we get
k(H) < (1 +2 a(n)/l + oz(s))(l + ,{ + 02(3) < O(B)Zk-l) o
k=1

S(A+28)1+.8/2% Q- om) Y.

Gauss-
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Since o(B) = 1 - A, ve have (1 - o(8))"! = cond(a) / A S cond(A). This

proves that

k(H) S ¢, cond(A) with cg < (1+ 2201+ .2/ 2) *6.5.

5

Hence we have proven

Theorem 4.3
*
If A=A >0 and A has the form 4.1 and Property A then Gauss-Seidel

iteration is numerically stable. m

Example 4.4 Successive Overrelaxation Iteration (SOR)

Assume that A = T - B has Property A. SOR iteration is defined by

H= (I-w L)'l(w U+ (1-w)I),
%.9) -1
h=w(I-wlL) * b

where the optimal w is given by

2

“ = .
1+ :;; - az(B)

It is easy to verify that

2
g(“).w-l‘@.—-l o
Jeond(A) + 1

Furthermore from Young (71, p. 248] it follows that

-1/2)2

|| n|| = o (1) k(o (1) vz, o(n)'l/z) + SemV? + om) + 1)

<23k o"(u) (a(ll)l/z + a(ﬂ)'l/z)

which yields

k(@) s 1+ 2 |l + 2.3emY2 4 syV? [ kom® s
k=1

10.2(1 + 4.6(1 = a(H)"2).




Since

-1/2)4 / 16

(1- a(ll))'2 = cond(A) (1 + cond(A)

we have k(H) < c. cond(A) with c. < 10.2 * 5,6 = 57, However if cond(A) is

5 5

large then c_ is less than 4. Hence we have proven {

5

Theorem 4.4

*
If A=A >0 and A has the form 4.1 and Property A then SOR iteration

is numerically stable. L
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5. GOOD-BEHAVIOR OF SUCCESSIVE APPROXIMATION ITERATIONS

Recall that we transform the linear system Ax + g = 0 to an equivalent

system (I - H) x = h which is solved by constructing [xk] such that

(.1) Xl 'ka-l-h.

We define two different sequences of residuals vectors, A(x:k - a) for the

original system and (I - H) (xk - a) for the transformed one. Let
(5.2) " M(xk - a)

where M = A or M= I - H. We want to verify good-behavior of the successive
approximation iteration with respect to A or I - H. Due to (2.2) we need to

prove that
-3 T 5l < Cep llnll llall + 0

for a constant ¢, = cz(n). From (3.8) we get

2
k
k+1 k-1
(5.4) el MH . S MH §1
i=0

where gi is given by (3.6) and (3.10).

Let {n } be a sequence such that || Nl = 1. Define

K
(5.5 kMH) = (||ulj+ [J1-H|]) sup Tim| _ ™ et -

Note that k(I,H) = k(H).

From 5.4 it easily follows

(5.6) '1? e ll < € k@B eyf ol + o).

g ¥ o " " ¢ ok
4 o s ed eddiad: i i




Since (5.6) is sharp, (5.3) yields

O I St g At 3 L L 3

i

'3 : Theorem 5.1

1f (3.5) holds then the successive approximation iteration is well-behaved

with respect to M iff
(5.7 kMR sc. M.
where Ce = c6(n).

Remark 5.1

We showed in Section 3 that [| H|| < q where q is not too close to unity

implies numerical stability of the successive approximation iteration. It

is also obvious that ||H || s q ylelds good-behavior since
kow < 335 )

and (5.7) holds with c, = (2q + 1) / (1-49. [ |
In general, it is rather hard to evaluate k(M,H) . However for many

-j cases it 1s enough to know some bounds on k(M,H).

Lemma 5.1
Let A # 0 be an eigenvalue of H, HE = A€ with || €|| = 1. Then

(5.8) k(M,H) zl—_—lm I Mell

oo f
Xi
pefine N, = — €. Then
i |X|i

|
i
i
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k k

x k k+1

\ ki o _ 4k 1 A1 -3

(AW w0 Ni)ug-mkl_m Mg

1=0 1=0
which proves (5.8). L
Lemma 5.2

Let M= I - H. If an iteration is well-behaved then

(5.9) max i : kx < b ”I'“” .

\Espect (H)

Proof

From Lemma 5.1 and 5.7 we get

1 L1
g 1 "“"-11_-—]{7 < k@,H) <S¢, ||1-H]|

for any eigenvalue of H which proves (5.9). »
Lemma 5.2 states a necessary condition for good-behavior with M = I - H

which means that |[A\| & 1 implies A & 1 for any eigenvalue of H.

Lemma 5.3

*
let M= I - Hand H= H . Then an iteration is well-behaved iff

1-
(5.10) max T sc, |1~ H|.
A€éspect (H) 1= X ¢

Proof
*
LetH-UDU*whcreU U-ImdD-dug(xl,...,kn). Let
*
" [lu)----.!'(‘i)]r =0 Tli. Then

e 1
K K K
1"0 mHt = - D 1‘!‘0 ot o* = ura - A) 1;-_;0 x‘l"* e
K

(1) 4T
o

k=1
tco.(l - ln)i‘:oxn z




and

1-1
(5.11) k(I - H,H) S 3 max — Tim )| 2z, || = 3 max __TLT- ;
3 1 lj Kk k j 1 lj

Since (5.11) is sharp, (5.10) is proven. .
Note that (5.10) means that H does not have eigenvalues close to -1.
We end this section by showing that for H = H* it is often possible to
redefine the transformed system such that (5.10) holds and yields good-behavior.

Multiply (I - H)x = h by I + H. Then x = Hzx + (I + H) h and we can iterate

(5.12) x lanzxk+ (I + B) h.

k+

We shall call the iteration (5.12) as the modified successive approximation
*

iteration. Note that I~l2 - [H2] 2 0 and the lefthand side of (5.10) is equal

to unity. Thus, if || I - H2|| is not too small, || I - H2|| 2¢c, forc, 2.1,

say, then we get good-behavior. Hence we have proven

Lemma 5.4
*
If H=H and ||I - H’ Il 2 ¢, >0 then the modifed successive approximation

g = 2 = 2
iteration (5.12) is well-behaved for M = I - H and e 73 . 8
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6. EXAMPLES OF GOOD-BEHAVIOR

*
As in Section 4 we assume that A = A > 0. Except Example 6.2 we addi-

tionally assume that A has Property A, see (4.1) and (4.5).

Example 6.1 Jacobi Iteration
= - t d = -
In this case H = I - A is hermitian an "min 2 )'ux’ Apply Lemma 5.1

with A= 1 - Xm for M = A and next M = I - H. In both cases we get

A
k(M,H) 2 'i-f'%"(— = cond(A)

which shows that Jacobi iteration is not well-behaved.

For the modified Jacobi iteration (5.12) let A = (1 - lm)z. Then

A
KA HZ) > max o 1 > cond(A)
’ P R 2
1=(1=-2X ) max
max

which contradicts good-behavior. Finally notice that

1 - n‘zﬂ- max M2 - N = e,
AEspect (A)
If one of eigenvalues of A is close to unity then <, & 1 which yields good-

behavior of the modified Jacobi iteration for M = I. Thus we get

Theorem 6.1
Jacobi iteration is not well-behaved for M = A or M= I - H. The modified
Jacobi iteration is not well-behaved for M = A and it is well behaved for

M= I - H whenever A has an eigenvalue close to unity. [ ]
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Example 6.2 Richardson Iteration

The matrix H= I - cA with ¢ = 2/(1““.tl + kmx) is also hermitian. Apply

Lemma 5.1 with A= (1 - ¢ Xm)iandM-A for i = 1,2. Then

i (2-1
A + A A
k(A,Hi) .( max - min ) xmax > conzl(A)

min

which proves that Richardson and the modified Richardson 4{iterations are not
well-behaved for M = A. <

Next note that H has eigenvalues close to -1 for ill-conditioned problems.
Lemma 5.3 shows that Richardson iteration cannot have good-behavior for M = I - H.
Finally

1 -8 =c® max A+ A - N =ec,.

Neapect @)y MAR

If one of eigenvalues of A is close to 1/c then ¢y 2 ] which implies good-behavior

of the modified Richardson iteration for M = I - H. Thus we have proven

Theorem 6.3
Richardson iteration is not well-behaved for M = A or M = I - H. The
modified Richardson iteration is not well-behaved for M = A and it is well-behaved

for M = I - H whenever A has an eigenvalue close to (kmm + Amax) I 2 [

Example 6.3 Gauss-Seidel Iteration

The matrix H is now defined by

0 F
e L
0 o6

From (4.6) we have
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et

F(I - F F) (1?"r 1’)“'1

0,
k
(I-HH = & §cig
) (I-F F)(F F)
o, ¥1I- F F) (F* pi
AR® = . wk=2l,
0 0
T (T e
stimate k(M,H) from (5.5). Let “1 = [Tli » Tli 1. Then
k
: T T
ked o o r (1) (2)7.T
1‘5‘0 (I - BH 'ﬂi [wk ’ wk ]
where
k-1
"k(l) =F(I-F F) = =t 'nf") + T\(‘l) -F 1)3)’
1=0
k
w‘ﬁz) =(I-F F) g ¢ pkt ni” :
i=0

*
Since F F is nonnegative definite then repeating the proof of Lemma 5.3 it

easy to verify that

IeiPl < @ lIell+ v T |l =3,

=& =l

2
o ll <1
which yields
k(I - H, H) s (|| u||+ ||1- u|) B+l <2./i0 #* 6.3.

Due to the form of A Hk it can be verified that
k(A, H) < 6.

Since |[|A|| and || I - H|| are both not less than unity we finally get

=1
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k(I - H, H) <210 || 1 - H|, k@a,10) <6 || Al

which due to (5.7) proves good-behavior. Hence we have shown

AR G it e s

Theorem 6.3

Gauss-Seidel iteration is well-behaved for M = A and M = I - H. »

Example 6.4 SOR Iteration
In this case

H= (I - wL)-l(wU + (1 -wI)

where w =2/ (1 + J1 - 0'2(3)) and A = I - B.

Let p be an eigenvalue of B. Then the eigenvalues of H are equal to

i\ --21-(w2 el BT e D

where i = «/:1., see Young [71, p. 203). From this
IAf v = 3 = aah ad J1 = af = Wil - o0

We apply Lemma 5.1 with M = I - H and next M = A. Then

i TR M TR 2
g | k(I - H,H) 23— £ c(%)—- 22 Jeond (A) -u

It is known that , =0 is an eigenvalue of B whenever the size of the problem n

is odd which yields

k(T - H,H) 251 Cond @A),

Hence SOR is not well-behaved for M = I - H.

A y g B




=22«

Now let M = A, 4 = - o(B) and let € be an eigenvector associated with

T e B TR

Amw-1, €=(g, 17, [|g]l= 1. From Young [71, p. 237] it follows

atel, Y2 €T e 1+ omrel, V2 €

Thus
1 k(A,H) zlJ'l-Aﬂlf = (1 - o)™ are], \"1/2 o1 -

- apo®, a7V2 . 297 2

2 Jeond @) [1 + o(B) - 2 em™Y2 . 1y,

which tends to infinity as cond(A) does. Hence SOR is also not well-behaved

for M = A, Hence we have

Theorem 6.4

SOR iteration is not well-behaved for M = I - Hor M = A,
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7. FINAL REMARKS

We have shown that certain well-known iterations are numerically stable
and except Gauss-Seidel they are not well-behaved. However it is possible

to get good-behavior for M = A using iterative refinement with single or

E double precision for the computation of the residual vectors.

5; It is shown in Jankowski and Wozniakowski [77] that if ( condz(A) is of
: } order of unity then any numerically stable method (direct or iterative) with
| iterative refinement using only single precision is well-behaved for M = A,
i ’ Since (C condz(A) is much less than unity in most practical cases, Jacobi,
Richardson and SOR iterations with iterative refinement in single precision

are well-behaved.

ACKNOWLEDGMENT

I am indebted to A. Kielbasinski and J. F. Traub for their valuable

comments on this paper.

. Y R e Fi
N i
= CRERR LY SN P —




Jankowski and Wozniakowski [77]

Wilkinson [63]

Wozniakowski [75)

Young [71]

- 26-

Jenkowski, M,,Woiniskowski, H, "Iterative
Refinement Implies Numerical Stability,"
to appear in BIT.

Wilkinson, J.H., Rounding Errors in Alge~
braic Processes, Prentice-Hall, Englewood
Cliffs, New Jersey, 1963.

Wozniakowski,H., "Numerical Stability of
the Chebyshev Method for the Solution of
Large Linear Systems," Dept. of Computer
Science Report, Carnegie-Mellon University,
1975, to appear in Numerische Mathematik.

Young, D. M., Iterative Solution of large
Linear Systems, Academic Press, New York,

1971.




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE pereEAD INSTRUCTIONS
" REPORT NUMB rmmm 3. RECIPIENT'S CATALOG NUMBER
- 4. TITLE (end Subtitle) 8. TYPE OF REPORT & PERIOD COVERED
ROUND-OFF ERROR ANALYSIS OF ITERATIONS Interim
FOR LARGE LIN’EAR SYSTEMS 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) % CONTRACT OR GRANT NUMBER(®) |
j H. Wozniakowski N00014-76-C-0370;
! NR 044-422
hi 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Carnegie-Mellon University AREA S Wal VLT SUmPERS
4 Computer Science Dept.
; Pittsburgh, PA 15213
] 1'. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office Of Naval Research 1. NU“.E: OF PAGES
Arlington, VA 22217 27
Ta. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Olfice) 18. SECURITY CLASS. (of thie report) E
: UNCLASSIFIED
[ 182 DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. ;

17. DISTRIBUTION STATEMENT (of the abstrect entered (n Block 20, if ditlerent from Report)

18. SUPPLEMENTARY NOTES

der) i

19. KEY WORDS (Continue on reverse aide If y and {dentify by block

20. ABSTRACT (Continue on reveree side Il neceseary and identity by dlock number) e deal with the rounding
error analysis of successive approximation iterations for the solution of large
linear systems Ax = b, We prove that Jacobi, Rishardson, Gauss-Seidel and SOR

iterations are numerically stable whenever A = A~ > 0 and A has Property A.
This means that the computed result approximates the exact solution & with
relative error of order C||A|l . || a” 1Irwhe'n'e C is the relative computer precisio
However with the exception of Gauss-Seidel iteration the residual vector
| Ax,~b|| is of order C||A°|?|| =1]| ||o|| and hence the remaining three iterations
are not well-behaved.

e e

DD , 525 1473  eoimion oF 1 NV 68 13 OBsOLETS UNCLASSIFIED

$/N 0102-014° 6601 | —————————-—m,m
SECURITY CLASSIFICATION OF THIS PAGR .

b v s s




